Experiment 1: Thin Layer Chromatography

Part A: understanding R_f values Part B: R_f values & solvent polarity Part C: R_f values & compound functionality Part D: identification of commercial food dye components

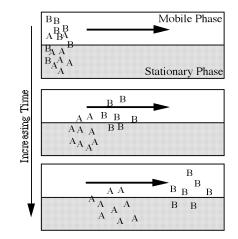
> Reading: MHS Ch. 17 pgs 219-235 Read Also: MHS Ch. 1, pp. 3-13 Ch. 2, pp. 20-21 Ch. 4, pp. 34-38 Ch. 5, pp. 38-47

Chromatography

"color writing"

- A variety of techniques used for the separation, isolation, & identification of the components of a mixture
- First described in 1903 (M.S. Tswett) as a method for the separation of plant pigments
- The fundamental basis for chromatography concerns the distribution of the individual components of a mixture between two phases:
 - 1. stationary phase
 - a non-moving substance to which the components of a mixture adsorb
 - commonly SiO₂ or Al₂O₃
 - 2. mobile phase
 - gas or liquid
 - percolates over the stationary phase carrying components along in the direction of flow

Chromatography


- So: components adsorbed on the stationary phase do not move components dissolved in the mobile phase move with flow
- Separation occurs because each component of a mixture has a different affinity for the stationary phase, and thus will be adsorbed to a greater or lesser extent than the other components
 - adsorption depends on interaction of specific component with stationary phase
 - stronger interaction = more molecules adsorbed on stationary phase, less in mobile phase
- Effectively establish an equilibrium for each component:

 $A_{(mobile)} \leftarrow A_{(stationary)}$

• Differences in equilibrium allow separation

Chromatographic Separation

• Consider a 2-component mixture (A + B):

establish equilibrium
 adsorption A >> B

more B in mobile phase
∴ B moves faster than A

 component separation increases with distance mobile phase travels

Types of Chromatography

- ➔ 1. Thin Layer Chromatography (TLC)
 - stationary phase: spread over glass or plastic sheet
 mobile phase: liquid; drawn up plate by capillary action

2. Column Chromatography

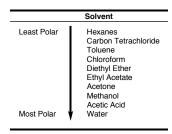
- stationary phase: contained in a column
- mobile phase: liquid; passes through column (gravity or pressure)

3. Gas Chromatography (GC)

- stationary phase: contained in a column
- mobile phase: gas; passes through column (pressure)

	column	ove
injection port		-
gas inlet		3
temp. probe —		Ì
heater —		Ð,
detector -	J W	Ŋ
outlat	₩ ~]

٠

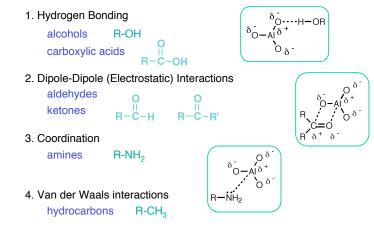

0

Factors that Affect TLC (& Column Chromatography)

• Factors that influence separation & rate of elution:

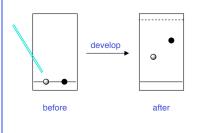
1. Polarity of mobile phase (solvent)

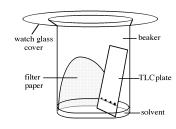
- more polar solvents displace substrates from stationary phase more easily than less polar solvents (*all substrates*)
- more polar the mobile phase, faster the substrate travels
- can increase polarity to point where get no separation at all



Factors that Affect TLC (& Column Chromatography)

- Factors that influence separation & rate of elution:
 - 2. Substrate interactions with stationary phase
 - stronger the interaction, more slowly the substance moves
 - polar substrates move more slowly than non-polar ones (polarity = ability of substance to bind to stationary phase)


Intermolecular Forces


• Influence adsorption of molecules on the stationary phase:

Thin Layer Chromatography Technique

- Performed on glass or plastic plate spread with thin layer of dry adsorbent (solid phase)
- Sample spotted on plate using fine capillary tube
- Plate put into developing chamber; capillary action draws solvent (mobile phase) up the plate carrying various components with it.
- Mark solvent front with pencil; let plate dry
- Visualize & evaluate spots

Thin Layer Chromatography

Visualization

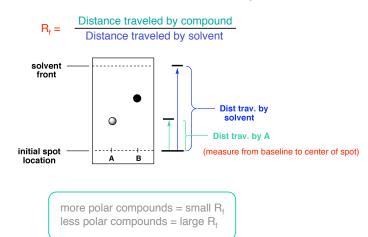
colored compounds - just look!

colorless compounds

1. UV light - fluorescent indicator in adsorbent dark spots against a bright background

2. lodine chamber

l₂ adds reversibly to many compounds brown spots against a yellow background


not permanent, mark with pencil

3. Chemical Stain

many possibilities typically destructive

Calculating Rf Values

• TLC Data can be quantified using "ratio to front" or R_f values

Thin Layer Chromatography: Utility

• Evaluation of Reaction Mixtures (can monitor reaction progress)

disappearance of one spot (starting material) & the appearance of a different spot over time indicates that the original compound has been converted to something else.

• As an Indicator of Purity

a pure compound should appear as a single spot by TLC; two or more spots in a single lane indicate the compound is impure Careful! just because you see one spot doesn't mean the compound is pure.

B: reaction mixture after 10 minutes

C: reaction mixture after 2 hours

TLC of an impure compound

TLC of column chromatography fractions

Thin Layer Chromatography: Utility

• Preliminary Identification of Compounds

For a given set of conditions (solvent system, adsorbent):

- two compounds having different R_f values are different
- two compounds having identical R_f values may be the same

A-C: known components D: unknown mixture

CAUTION! TLC does not provide quantitative information about reaction yields or compound identity

Next Week

Experiment 1: Thin Layer Chromatography

- A. Understanding R_f Values evaluate how R_f varies with length of TLC plate
- B. R_f values & solvent polarity evaluate how solvent polarity affects R, value of single compound
- C. R_f values & compound functionality evaluate how R_c is affected by different functional groups
- D. Identification of commercial food dye components investigate the make up of food coloring

Remember:

- Complete the pre-lab before you arrive (notebook)
- Dress appropriately
- Have a plan

Strategy

You must complete this experiment in the allotted time period.

- Come Prepared!
- Run through the entire experiment before repeating any parts. (ideally there will be no need to do so)
- Share developing chambers

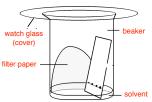
A. Understanding R, values B. R_f values & solvent polarity

Do one of these experiments first!

TECHNIQUE IS IMPORTANT!!

practice spotting sample on spare TLC plate GOAL: small, compact spots

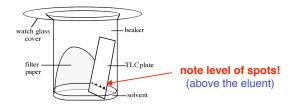
C. R_r values & compound functionality


D. Identification of commercial food dye components - will take the longest

Some Pointers:

•

- Spotting the Plate Small, compact spots give best results by TLC don't overload the plate - will get streaking practice first!!
 - Use only pencil when drawing on TLC plates ink may run!
 - Take care not to contaminate the samples!!! results will be meaningless
- Preparing the Developing Chamber
 - Assemble the components glassware should be clean! cover should be on!
 - · Filter paper should be saturated with solvent keeps atmosphere saturated w/vapors stops evaporation of eluent from plate



Some Pointers:

Developing the Plate

- Solvent level MUST be below level of the spots so samples don't wash off
- Don't lean plate against filter paper will get uneven elution - distorts your results
- Remove plate before solvent reaches the top! otherwise, invalidates R_f values
- Let plates dry before visualizing with UV light or iodine

